22,010 research outputs found

    Aerial Simultaneous Localization and Mapping Using Earth\u27s Magnetic Anomaly Field

    Get PDF
    Aerial magnetic navigation has been shown to be a viable GPS-alternative, but requires a prior-surveyed magnetic map. The miniaturization of atomic magnetometers extends their application to small aircraft at low altitudes where magnetic maps are especially inaccurate or unavailable. This research presents a simultaneous localization and mapping (SLAM) approach to constrain the drift of an inertial navigation system (INS) without the need for a magnetic map. The filter was demonstrated using real measurements on a professional survey flight, and on an AFIT unmanned aerial vehicle

    Knowledge-based vision and simple visual machines

    Get PDF
    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong

    Linear feedback stabilization of a dispersively monitored qubit

    Get PDF
    The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative, and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse timescale to be long compared to the feedback delay yields the best stabilization.Comment: 16 pages, 7 figure

    MagSLAM: Aerial Simultaneous Localization and Mapping using Earth\u27s Magnetic Anomaly Field

    Get PDF
    Instances of spoofing and jamming of global navigation satellite systems (GNSSs) have emphasized the need for alternative navigation methods. Aerial navigation by magnetic map matching has been demonstrated as a viable GNSS‐alternative navigation technique. Flight test demonstrations have achieved accuracies of tens of meters over hour‐long flights, but these flights required accurate magnetic maps which are not always available. Magnetic map availability and resolution vary widely around the globe. Removing the dependency on prior survey maps extends the benefits of aerial magnetic navigation methods to small unmanned aerial systems (sUAS) at lower altitudes where magnetic maps are especially undersampled or unavailable. In this paper, a simultaneous localization and mapping (SLAM) algorithm known as FastSLAM was modified to use scalar magnetic measurements to constrain a drifting inertial navigation system (INS). The algorithm was then demonstrated on real magnetic navigation flight test data. Similar in performance to the map‐based approach, MagSLAM achieved tens of meters accuracy in a 100‐minute flight without the use of a prior magnetic map. Aerial SLAM using Earth\u27s magnetic anomaly field provides a GNSS‐alternative navigation method that is globally persistent, impervious to jamming or spoofing, stealthy, and locally accurate to tens of meters without the need for a magnetic map

    Effective scraping in a scraped surface heat exchanger: some fluid flow analysis

    Get PDF
    An outline of mathematical models that have been used to understand the behaviour of scraped surface heat exchangers is presented. In particular the problem of the wear of the blades is considered. A simple model, exploiting known behaviour of viscous flow in corners and in wedges, and accounting for the forces on the blade is derived and solutions generated. The results shows initial rapid wear but that the wear rate goes to zero

    Introduction

    Get PDF

    Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Get PDF
    The sensitivity of the formation of secondary organic aerosol (SOA) to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). Vapour pressures (P^(vap)) were estimated with three commonly used structure activity relationships. The values of P^(vap) were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation), differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NO_x conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the P^vap estimation method

    Supergravity, Supermembrane and M(atrix) model on PP-Waves

    Full text link
    In the first part of this paper, we study the back-reaction of large-N light cone momentum on the maximally supersymmetric anti-pp-wave background. This gives the type IIA geometry of large-N D0-branes on curved space with fluxes. By taking an appropriate decoupling limit, we conjecture a new duality between string theory on that background and dual field theory on D0-branes which we derive by calculating linear coupling terms. Agreement of decoupling quantities, SO(3) \times SO(6) isometry and Higgs branch on both theories are shown. Also we find whenever dual field theory is weakly coupled, the curvature of the geometry is large. In the second part of this paper, we derive the supermembrane action on a general pp-wave background only through the properties of null Killing vector and through this, derive the Matrix model.Comment: 19 pages, LaTeX. v2: corrected interpretation of supergravity solutio
    corecore